首页> 外文OA文献 >On-Board Orbit Determination and 3-Axis Attitude Determination for Picosatellite Applications
【2h】

On-Board Orbit Determination and 3-Axis Attitude Determination for Picosatellite Applications

机译:皮卫星应用的机载轨道确定和三轴姿态确定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis outlines an orbit determination and 3-axis attitude determination system for use on orbit as applicable to 1U CubeSats and other picosatellites. The constraints imposed by the CubeSat form factor led to the need for a simple configuration and relaxed accuracy requirements. To design a system within the tight mass, volume, and power constraints inherent to CubeSats, a balance between hardware complexity, software complexity and accuracy is sought. The proposed solution consists of a simple orbit propagator, magnetometers with a magnetic field look-up table, Sun sensors with an analytic Sun direction model, and the TRIAD method to combine vector observations into attitude information. The orbit propagator is a simple model of a circular trajectory with several frequently updated parameters and can provide orbital position data with average and maximum errors—when compared to SGP4—of less than 3.7km and 10.7km for 14 days. The magnetic field look up table provides useful information from a small memory footprint; only 480 data points provide a mean error of approximately 0.2° and a maximum error of approximately 2°—when compared to the IGRF model. The Sun’s direction is modeled, and as expected, can be modeled simply and accurately. Combining the magnetic field and Sun direction models with inaccurate sensors and the TRIAD method results in useful attitude information from a very simple system. A system with Sun sensor error standard deviation of 1° and magnetometer error standard deviation of 5° yields results with average error of only 2.74°, and 99% of the errors in this case are less than approximately 13°. The system outlined provides crude attitude determination with software and hardware requirements that are well within the capabilities of current 1U CubeSats—something that many other systems, such as Kalman filters or star trackers, cannot do. It also provides an excellent starting point for future ADCS systems, which will significantly increase the ability of CubeSats.
机译:本文概述了适用于1U立方体卫星和其他微卫星的轨道确定和3轴姿态确定系统。 CubeSat形状因数施加的约束导致需要简单的配置和宽松的精度要求。为了在CubeSat固有的严格的质量,体积和功率约束内设计系统,需要在硬件复杂性,软件复杂性和准确性之间寻求平衡。所提出的解决方案包括一个简单的轨道传播器,具有磁场查找表的磁力计,具有解析的太阳方向模型的太阳传感器以及将矢量观测合并为姿态信息的TRIAD方法。轨道传播器是具有多个频繁更新参数的圆形轨迹的简单模型,可以提供14天的平均误差和最大误差(与SGP4相比)的平均和最大误差(小于SGP4)的轨道位置数据。磁场查询表可从较小的内存占用空间中提供有用的信息;与IGRF模型相比,只有480个数据点提供大约0.2°的平均误差和大约2°的最大误差。对太阳的方向进行建模,并且可以预期地对它进行简单而准确的建模。将磁场和太阳方向模型与不准确的传感器和TRIAD方法结合使用,可以通过非常简单的系统获得有用的姿态信息。太阳传感器误差标准偏差为1°,磁力计误差标准偏差为5°的系统所产生的结果的平均误差仅为2.74°,在这种情况下,99%的误差小于约13°。概述的系统通过软件和硬件要求提供了粗略的姿态确定,这些要求完全在当前1U CubeSat的能力范围内,而其他许多系统(例如,卡尔曼滤波器或星跟踪仪)则无法做到。它还为将来的ADCS系统提供了一个很好的起点,它将大大提高CubeSats的能力。

著录项

  • 作者

    Bowen, John Arthur;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号